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Background: For far too long, the diagnosis of bloodstream infections has relied on time-consuming
blood cultures coupled with traditional organism identification and susceptibility testing. Technologies
to define the culprit in bloodstream infections have gained sophistication in recent years, notably by
application of molecular methods.
Content: In this review, we summarize the tests available to clinical laboratories for molecular rapid
identification and resistance marker detection in blood culture bottles that have flagged positive. We
explore the cost–benefit ratio of such assays, covering aspects that include performance characteris-
tics, effect on patient care, and relevance to antibiotic stewardship initiatives.
Summary: Rapid blood culture diagnostics represent an advance in the care of patients with blood-
stream infections, particularly those infected with resistant organisms. These diagnostics are relatively
easy to implement and appear to have a positive cost–benefit balance, particularly when fully incor-
porated into a hospital's antimicrobial stewardship program.

IMPACT STATEMENT
Understanding the value and role of rapid molecular blood culture diagnostics in the healthcare

system is vital to the practice of clinical laboratories and providers.

Diagnosis of bloodstream infection (BSI)3 caused
by routine bacteria and yeast with traditional
identification and susceptibility methods re-
quires, above all things, time. Blood culture bottles
are inoculated with patient blood and then incu-
bated on an automated microorganism growth

detection system. After a bottle flags positive, the
blood culture bottle is removed, the broth is Gram
stained, and then an aliquot is subcultured to solid
media. Overnight growth allows organisms to be-
come sufficiently visible to distinguish pure from
mixed infections and to be used for conventional
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biochemical identification. Antimicrobial suscepti-
bility testing (AST), the method of which depends
on the organism identification, requires at least
an additional day. Clearly, the limitations in turn-
around time were apparent decades ago to clini-
cians, who grew accustomed to using empiric
therapy for prolonged periods. Consequently,
clinicalmicrobiologists devisedmeans for rapid or-
ganism characterization by biochemical or sero-
logical methods. Direct from positive-bottle
coagulase testing, for example, could be per-
formed on small aliquots of broth containing
gram-positive cocci for expedited identification of
Staphylococcus aureus and coagulase-negative
staphylococci (1, 2). Direct inoculation of organ-
isms to automated identification systems, such as
Vitek, Microscan, and others, has long been vali-
dated and used by some clinical laboratories, with
a turnaround time of as little as 4 h for identifica-
tion and 6–8 h for susceptibility testing (3–5). Tech-
nology has advanced the early characterization of
blood culture isolates from nucleic acid probe
methods toward sample-to-answer molecular as-
says (Table 1). In this review, we will describe the
effect that these molecular technologies have had
on healthcare, discuss factors to be considered for
laboratories looking to implement these tests, and
present the platforms currently available for clini-
cal laboratories.

HEALTH EFFECT CONSIDERATIONS

The Gram stain, one of the most fundamental
methods in microbiology, by itself provides imme-
diately actionable information for providers and
has been shown to decrease mortality from BSI
the quicker the results are delivered (6, 7). Direct-
from-bottle susceptibility, which has been vali-
dated by laboratories for decades, has been
shown to result in healthcare cost savings and ad-
justments to directed therapy sooner than the
conventional setup (5). Because implementation of
molecular techniques would represent significant

added costs to the laboratory, it is vital to consider
how these incremental advances in technology
can positively affect the provision of care even fur-
ther for BSI while decreasing overall healthcare
costs.
For BSIs, clinicians will always want fast, action-

able, and reliable results. Nucleic acid–based
methods can provide more definitive results than
biochemical methods, making them attractive
tools for BSI diagnosis. Intuitively, these rapid tests
have potential to affect patient care, but the extent
of the effect cannot be quantified without clinical
studies. Common metrics that studies have used
to determine if rapid identification technologies
are clinically useful include days on broad-spectrum
antibiotics, days until start of directed therapy, pa-
tient mortality, and length of stay in hospital or
intensive care unit. Retrospective studies at indi-
vidual institutions suggest that the implementa-
tion of rapid blood culture identification assays has
improved patient care. On average, providers are
initiating appropriate antibiotics more promptly
while limiting patient exposure to broad-spectrum
agents, with some studies demonstrating an effect
on patient mortality and decreased healthcare
costs (8–10). Clinician judgment and hospital cul-
ture affect the interpretation of test results and
thus likely confound the results and explain varia-
tions. As technologies progress to lessen turn-
around time of test results while becoming less
expensive, the positive effect on the delivery of
healthcare will continue to grow.
Barriers to achieving the desired outcome when

providing rapid identification and resistance deter-
minants have also been studied. Providers are not
typically well informed about how these new tech-
nologies fit with existing procedures or how to cor-
rectly interpret amicrobiology laboratory report of
the results (11). The utility of organism identifica-
tion without similarly rapid AST results could be
variable by institution in terms of patient complex-
ity and the local antibiogram. Broad-spectrum an-
tibiotics may be continued despite rapid organism
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Table 1. Description of 4 FDA-approved multiplexed assays for rapid identification of microorganisms
from positive blood cultures.

Assay Organisms targeted
Resistance

mechanisms targeted Method
Run
time

Verigene BC-GP (Luminex Corp.) S. aureus mecA DNA microarray 2.5 h
S. epidermidis vanA
S. lugdunensis vanB
S. pneumoniae
S. pyogenes
E. faecalis
E. faecium
L. monocytogenes

Verigene BC-GN (Luminex Corp.) E. coli blaCTX-M DNA microarray 2.5 h
K. pneumoniae blaKPC
K. oxytoca blaOXA-48
Citrobacter spp. bla-IMP
Enterobacter spp. blaVIM
Proteus spp. Acinetobacter spp. blaNDM
P. aeruginosa

FilmArray BCID (bioMérieux) Staphylococcus mecA Nested PCR �1 h
S. aureus vanA/B
Streptococcus blaKPC
S. agalactiae
S. pyogenes
S. pneumoniae
Enterococcus
L. monocytogenes
A. baumannii
H. influenzae
N. meningitidis
P. aeruginosa
Enterobacteriaceae
E. coli
E. cloacae complex
K. oxytoca
K. pneumoniae
Proteus
S. marcescens
C. albicans
C. glabrata
C. krusei
C. parapsilosis
C. tropicalis

iC-GPC (iCubate) S. aureus mecA Amplicon rescue
multiplex PCR 4–5 h

S. epidermidis vanA
S. pneumoniae vanB
E. faecalis
E. faecium
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identification for a variety of reasons, such as need
for increased confidence in full AST profile before
deescalation or before patient discharge or em-
piric treatment of suspected infection localized
elsewhere (8, 12, 13). For gram-negative organ-
isms, deescalation may be especially difficult be-
cause the antibiotic resistance mechanisms are
diverse and complex, well beyond what is targeted
by available assays.
Other barriers include available resources for in-

tensive antimicrobial stewardship support and the
high cost of sample-to-answer kits compared to
nonmolecular methods such as MALDI-TOF mass
spectrometry (14). Maximal clinical and cost bene-
fits of these molecular assays for BSI cannot be
achieved without collaboration between the labo-
ratory and its clinical partners. Implementation of
new testing alone may decrease turnaround time
for the laboratory result and yet not result in im-
provements in clinical outcomes without antimi-
crobial stewardship intervention (15). Conversely,
antimicrobial stewardship alone has been shown
to decrease time to effective or optimal therapy for
BSI (16), but rapid laboratory testing can greatly
augment the effect (8, 9, 17, 18). Some studies on
the effect of BSI diagnostics have paired imple-
mentation of rapid molecular diagnostics with
intensive antimicrobial stewardship (8, 19, 20).
However, a stewardship service operating without
interruption in coverage may not be an achievable
reality in many hospitals. Recent clinical guidelines
for the creation of antimicrobial stewardship pro-
grams from the Infectious Diseases Society of
America and the Society for Healthcare Epidemiol-
ogy of America include provisions to further re-
search and develop rapid diagnostic tests to help
limit antimicrobial use (21).
For a typical 500-bed community hospital, addi-

tional multiplex testing of positive blood cultures
could cost upwards of a $500000/year in reagents
alone. An informed cost analysis, weighing the high
cost of implementation against the cost benefits to
the hospital, is essential to choosing a diagnostic

test wisely. One 2008 economic analysis reason-
ably questioned the cost-effectiveness of molecu-
lar identification of S. aureus from positive blood
cultures compared to tube coagulase testing (22).
Such questions continue today as testing becomes
more advanced and highly multiplexed and hence,
generally more expensive. A recent comprehen-
sive cost-effectiveness study using evidence-
basedmodeling found that out of 12 strategies for
BSI diagnosis, MALDI-TOF from blood culture
broth combined with antimicrobial stewardship
was the most cost-effective strategy, although
some of the molecular tests discussed in this re-
view were also considered cost-effective options
(14). The assumptions made in a broad analysis
do not all apply to a given institution. As such,
calculations must be individualized on the basis
of institution-specific factors.

LABORATORY CONSIDERATIONS

Vital factors to consider in assessing feasibility of
implementation include laboratory staffing, skill
level of technologists, and diversity of test menu
available on a platform. A laboratory that does not
have third-shift personnel who are proficient at
reading Gram stains may consider implementing a
blood culture panel that does not require a Gram
stain interpretation before testing, such as BioFire
BCID (bioMérieux). If a laboratory's staffing level
cannot accommodate on-demand molecular
testing but requires batch testing, the opportu-
nity for clinical effect is much diminished. Such
may be the case for testing from blood culture
bottles, which requires more hands-on time,
e.g., peptide nucleic acid fluorescence in situ hy-
bridization or MALDI-TOF.
With the increasing number of options for mo-

lecular testing from positive blood culture bottles,
the laboratory plays an important role in selection
of the optimal platform for its patients. Different
patient populations will see a different spread of
the common BSI pathogens (Table 2). Tests with
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the biggest effect on patient care will identify resis-
tance determinants or organism species that
would alter management and do so in a large pro-
portion of the institution's BSI cases. Choice of
panel could therefore depend on the local preva-
lence of methicillin-resistant Staphylococcus aureus
(MRSA), vancomycin-resistant enterococci, and ex-
tended-spectrum β-lactamase (ESBL)-producing
and carbapenemase-producing gram-negative
organisms. This prevalence would determine the
priority for detection of certain resistance determi-
nants, e.g.,mecA, vanA/B, blaCTX-M, blaKPC, etc., which
at this time differ by assay. Gram-positive organ-
isms generally cause most positive blood cul-
tures, so the volume of gram-negative or yeast
isolates from blood cultures could also help de-
cide the most cost-effective molecular panels to
implement.
Like anymethod, molecular tests also bear tech-

nical limitations that the laboratory should be
familiar with before their implementation. Con-
siderations could include the likelihood of DNA
contamination, level of cross-reactivity among ge-
netically similar organisms, and reliability of geno-
type in predicting phenotype. For example, with
molecular methods it is not possible to reliably dis-
tinguish between Escherichia coli and Shigella spp.,
and some methods do not reliably distinguish be-
tween Streptococcus pneumoniae and other S. mitis
group members. For S. aureus, most methicillin re-
sistance is attributable to mecA but could also be
associated with the less common mecC and newly
described mecB (23). In addition, there are many
genetic variants in the frequently targeted staphy-
lococcal cassette chromosome mec (SCCmec),
whichmolecular assays in the past have not always
captured (24). Laboratories must decide whether
to confirm identifications after growth on solidme-
dia in light of these caveats. Another common lim-
itation of BSI panels is their decreased ability to
detect mixed infections, whichmay comprise a sig-
nificant percentage of BSIs depending on the pa-
tient population (Table 2). These factors highlight

the importance of comprehensive assay validation
before implementation.
The consideration that ought to go into creation

of interpretive comments for these rapid BSI as-
says should not be overlooked. Laboratories need
to finely balance the interpretive information that
they give providers and take into account the Food
and Drug Administration (FDA)-cleared claims of
the assay in question. On the one hand, caveats
such as those mentioned above are important to
communicate so that providers understand the
limitations of the testing. On the other hand, re-
sults with caveats and disclaimers that cast too
much uncertainty may preclude clinical action and
work against stewardship efforts. A report of “pre-
sumptive methicillin-susceptible S. aureus (MSSA)”
may not be worded strongly enough to convince a
provider to deescalate from vancomycin and may
lead some providers to simply wait for confirma-
tory test results. The laboratory director has the
task of deciding, on the basis of the laboratory's
own data and the package insert information, how
to couch the result in a way that is both accurate
and effective at informing their clinicians.
It is expected that phenotypic AST results will be

discordant with genotype results on occasion, and
laboratories must be prepared for these occur-
rences. Examples of discordant results that are en-
countered by laboratories are amecA-positive result
on a S. aureus isolate that tests susceptible to cefoxi-
tin or oxacillin or an E. coli that is positive for blaCTX-M
but tests as indeterminate or negative by ESBL phe-
notype testing. Guidance from the Clinical and Labo-
ratory Standards Institute on resolving these
discordant results is available. The general approach
is to confirm results of the discordant tests, with final
recommendations based on evidence from peer-re-
viewed literature (25).
Undeniably, laboratories play an increasingly

central role in efforts against multidrug resistant
organisms (MDRO). Large-scale studies have
shown that the burden of antibiotic-resistant or-
ganisms causing BSI has increased in recent years,
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and this increase is in addition to the steady base-
line level of BSI due to antibiotic-susceptible organ-
isms (26, 27). Multiplexed panels on positive blood
cultures have introducedmany laboratories to the
routine identification of genetic mechanisms of
drug resistance of epidemiological importance.
Working with infection preventionists is key to cap-
italizing on these data for prompt patient isolation
and MDRO tracking. Integrative decision support
systems linked to laboratory results and the elec-
tronicmedical recordare furtherbeingused toassist
in the rapid capture of identifying these highly resis-
tantorganisms (28). Laboratories shouldunderstand
and help decide how rapid detection of an ESBL or
carbapenemresistancedeterminantwould affect in-
fection prevention practices. This determination is
facilitatedbyhaving collaborativediscussionswith in-
fectiousdiseasesspecialists, infectionpreventionists,
and antimicrobial stewardship teammembers.
Laboratories should also be prepared for re-

porting potentially unusual genotypic resistance
results. A thorough assay verification study involv-
ing a wide variety of MDROs will serve as a founda-
tion for the laboratory's ability to report reliable
results. Strains of well-characterized MDROs are
available from many sources, but the Centers for
Disease Control and Prevention AR Bank is a par-
ticularly valuable resource (https://wwwn.cdc.gov/
arisolatebank/). As laboratories gain confidence
in the reliability of these assays, they can more
confidently report results, for instance a Pseu-
domonas aeruginosa unexpectedly harboring
blaKPC or detection of a carbapenemase gene of
low local prevalence.

NUCLEIC ACID PROBE-BASED METHODS

Because a positive blood culture bottle contains
amplified numbers of organisms, an analytically
sensitive method is not necessarily desirable or a
prerequisite for further organism characterization,
as exemplified by the Gram stain. Advantages of
probe-based methods include the obviation of

DNA contamination events leading to false-posi-
tive results and potentially decreased reagent and
capital expenses. Currently, FDA-cleared probe-
basedmethods require somewhatmore hands-on
time than nucleic acid amplification methods, and
they require prior Gram stain interpretation be-
fore testing.
One of the earliest molecular methods for rapid

bloodstream pathogen identification was PNA
FISH (AdvanDx). The procedure is performed on a
slide spotted with the positive blood culture broth.
The fluorescently labeled, synthetic PNA probe dif-
fuses through the pathogen cell wall and binds to
ribosomal RNA. The FISH label provides visualiza-
tion of bound PNA-RNA hybrids under fluorescent
microscopy. The method has excellent accuracy,
with 95%–100% sensitivity and specificity for
Staphylococcus spp., Enterococcus spp., E. coli, K.
pneumoniae, P. aeruginosa, and Candida spp. from
positive blood culture broths (29–32). The original
process consisted of a series of stains, incubations,
and washes, consuming much hands-on time of
licensed personnel. Subsequently, a more stream-
lined method (QuickFISH) was developed without
loss in performance (33–35). The need for fluores-
centmicroscopy, a luxury in some laboratories, still
precludes widespread use. PNA FISH tests are
available separately for Staphylococcus, Enterococ-
cus, gram-negative bacilli, and Candida spp. Partic-
ularly impactful are the panels for Candida,
including the C. albicans/C. glabrata and the Yeast
Traffic Light PNA FISH systems. Because the anti-
fungal susceptibility profile of clinically significant
Candida spp. is fairly predictable, provision of an
identification, grouped by typical susceptibility to
fluconazole, can provide valuable preliminary in-
formation (36, 37). Cross-reactivity of the yeast
PNA FISHprobeswith less commonly encountered
yeast species may be seen, for example, between
C. parapsilosis and the closely related C. orthopsilo-
sis and C. metapsilosis (manufacturer's data), be-
tween C. glabrata or C. krusei and Rhodococcus
mucilaginosa, or C. albicans or C. parapsilosis and C.
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lambica (31). Positive clinical outcomes have also
been associated with use of other PNA FISH tests,
including for enterococci and staphylococci (32,
38). For example, among cancer patients at a ter-
tiary care center, the Staphylococcus QuickFISH
test was associated with less vancomycin use and
vancomycin-level monitoring, shortened median
antibiotic duration by 1 day, and half as many cen-
tral venous catheter removals compared to the
control group (38).
The Verigene system (Luminex Corp.) was FDA

cleared in 2012 for its gram-positive panel test (BC-
GP) and in 2014 for its gram-negative panel (BC-GN).
An aliquot of positive blood culture broth is loaded
onto a cartridge and placed on the processor, where
organism DNA is sheared and then captured on a
DNA microarray. The cartridge requires manual
transfer to a reader for signal detection, which is
basedon interactionof silver andgoldnanoparticles.
The analytical time totals close to 2.5 h.
The BC-GP distinguishes coagulase-negative

staphylococci from S. aureus, MRSA from MSSA,
vancomycin-resistant enterococci from vancomycin-
susceptible enterococci, and several clinically
significant streptococci to species level. Overall accu-
racy in identification of panel targets, includingmecA,
vanA, and vanB, is reported to bemore than 95% (39,
40). Limitations include decreased sensitivity in iden-
tifying panel targets in polymicrobial blood cultures,
with 1 large study reporting that the BC-GP missed
28% of these (39). Mixed cultures with more than 1
Staphylococcus spp. along with a positive result for
mecA shouldbe interpretedwith cautionas theassay
cannot determine which Staphylococcus spp. har-
bors themecA gene. Also, downstream confirmation
of S. pneumoniae results are particularly necessary
owing to the cross-reactivity within the S.mitis group,
leading to false-positive S. pneumoniae results (40,
41). Coupled with antimicrobial stewardship, use of
the BC-GP has been found by clinical studies to be
associated with quicker antibiotic optimization
(12.5–27 h faster vs preintervention) and shortened
antibiotic treatment duration for gram-positive

blood culture contaminants (18–37h reduction), but
conclusions differ on whether mortality or hospital
length of stay is decreased (10, 42, 43). One study did
find that for enterococcal BSI specifically, implemen-
tation of the panel significantly correlated with a
21.7-day reduction in length of stay and more than
$60000 reduction in mean hospital costs (44).
The Verigene gram-negative panel BC-GN cov-

ers common gram-negative organisms in addition
to the resistance genes blaCTX-M for ESBL and 5
plasmid-mediated carbapenemase genes (Table
1). The inclusion of the most common ESBL mech-
anism in theUS (blaCTX-M) provides information that
was not previously available bymolecular testing in
an FDA-cleared assay. In a large multicentered
study of 1847 blood cultures containing gram-
negative bacteria, the BC-GN had an overall sensi-
tivity of 98% and specificity of 100% in organism
identification from monomicrobial blood cultures.
In polymicrobial cultures, target organisms were
detected in only 54% of cases. Users may encoun-
ter discordance in identification of K. variicola be-
cause the BC-GN will not detect K. variicola,
whereas MALDI-TOF and biochemical panels mis-
identify these isolates as K. pneumoniae (45). Analyt-
ical sensitivity in detecting resistance determinants
ranged from94.3% to100%dependingon the target
(45, 46). The predictive value of negative blaCTX-M for
susceptibility to third-generation cephalosporins can
be examined by clinical laboratories that use this
panel and can potentially be exploited to help guide
therapy (47). Studies have found that compounded
with antimicrobial stewardship, the BC-GNpanel can
help decrease time to optimal therapy by 11–14 h
but vary infindings termsofeffecton lengthof stayor
hospital costs (12, 48, 49).

NUCLEIC ACID AMPLIFICATION-BASED
METHODS

Sample-to-answer, PCR-based assays for S. au-
reus and mecA directly on positive blood culture
broths have been implemented in many clinical
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laboratories for some time and have included both
laboratory-developed and FDA-cleared tests (50–
52). Currently the MRSA/SA BC performed on the
Xpert PCR system (Cepheid) is the only such assay
that is FDA cleared for testing on positive blood
cultures. Its analytical sensitivity and specificity for
both S. aureus andMRSA detection are higher than
98% (53). A test that can identify S. aureus from
coagulase-negative staphylococci and differenti-
ate MRSA from MSSA can have high clinical effect
and be particularly cost-effective. Still, it is critically
important to incorporate antimicrobial steward-
ship efforts into such testing for MSSA and MRSA
to maximize patient benefit and healthcare
savings. One study illustrated that alongside anti-
microbial stewardship intervention, the implemen-
tation of the MRSA/SA BC PCR resulted in directed
therapy for MSSA 1.7 days sooner and mean hos-
pital costs that were significantly lower by more
than $21000 (51).
The FilmArray BCID panel is a comprehensive

panel that encompasses gram-positive, gram-
negative, and fungal organisms. Resistance deter-
minants are limited to mecA, vanA or vanB, and
blacKPC. With 27 targets, the cost per panel is
higher than the other aforementioned assays. It
can be performed on positive blood cultures bot-
tles without prior Gram stain interpretation. The
sample-to-answer method requires less than 1 h
run time with minimal hands-on manipulation. Re-
sults from a multicentered trial showed reliability
in identification of organism and resistance deter-
minants on the panel, with sensitivity of more than
96% for all panelmembers after resolution testing.
Raoultella ornithinolytica isolates led to discordant
cases in which phenotypic testing misidentified
them as Klebsiella oxytoca while the BCID panel did
not (54). Polymicrobial cultures can present diffi-
culty for the BCID, leading to false-positive results
in 46% and false-negative results in roughly 30% of
cases (54, 55).
Unlike probe-based methods, the FilmArray

uses nested PCR, which introduces concern of

contamination with DNA from either viable or non-
viable organisms in the blood culture broth or test-
ing environment. Issues are periodically reported
with false-positive results, including a recall in 2014
for false-positive Enterococcus and Pseudomonas
aeruginosa results and contemporary issues with
false-positive Proteus spp. results. These occur-
rences highlight the limitations of using nested
PCR to amplify nucleic acid targets on positive
blood culture broths.Whilemicrobiologic reagents
such as blood culture bottles are sterile, they are
not necessarily free of nucleic acid.
The sole randomized clinical trial examining

rapid molecular testing on positive blood cultures
studied the use of the BCID in a group without
antimicrobial stewardship, use of BCID in a group
combined with antimicrobial stewardship, and the
use of standard blood culture processing (8). Both
BCID groups were associated with more frequent
directed antimicrobial use with shorter times until
treatment optimization. No significant differences
were found for length of hospital stay, mortality, or
cost between any of the 3 groups. A retrospective
study identified similar findings when comparing
conventional organism identification with or
without antimicrobial stewardship to BCID with
stewardship (17). In contrast, other retrospec-
tive studies have reported decreased hospital
length of stay, healthcare costs, and empirical
vancomycin use for gram-positive cocci along-
side antimicrobial stewardship (56). Another
study combined the use of the BCID panel with a
stewardship program and found significantly im-
proved time to deescalation and reduction in the
use of antipseudomonal agents (20).
The relatively new iCubate system for gram-

positive cocci (iC-GPC), FDA cleared in 2017, has a
more limited multiplexed panel (Table 1). It uses a
patented amplicon rescue multiplex PCR (ARM-
PCR) method at its core, which involves multiplex
PCR with microarray hybridization followed by
fluorescence-based signal detection (57). Like the
Verigene system, the test cassette is manually
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transferred between a processor and reader unit.
Turnaround time is 4–5 h. Sensitivity and specific-
ity exceeded 95% for organism identification and
resistance gene detection for all target organism
identifications except for S. pneumoniae, for which
there were 4 false-negative results out of 27 cases
(58).

OTHER METHODS

There have been other unique methods devel-
oped for detecting pathogens from positive blood
culture broths. While they may not have enjoyed
widespread use, they bear mentioning as creative
avenues for cost-effective, rapid diagnostics. An
immunochromatographic method for detection of
S. aureus from blood cultures in less than 30 min
(Binax NOW, Alere) had promising performance
characteristics and could be used in conjunction
with serologic PBP2a detection forMRSA (59, 60). A
bacteriophage-based method, the KeyPath MRSA/
MSSA blood culture test (MMBT, MicroPhage, Inc)
was FDA cleared in 2012 but did not sustain long-
term commercial availability. It used bacterio-
phage specific to S. aureus to self-amplify and allow
detection by specific antibodies in a process that
required more than 5 h. Assay performance was
stronger in specificity than sensitivity (61, 62).
Specific Diagnostics has developed a novel

methodof early pathogen identification simultane-
ously with microorganism growth in blood culture
bottles. The concept is based on detection of sig-
nature volatile organic compounds emitted from
organisms that allow for their identification as
demonstrated in seeded studies (63).

FUTURE DIRECTIONS

For the foreseeable future, use of bacterial cul-
tures will continue to be necessary and relevant to

the characterization of isolates for patient care
purposes. Areas of assay development that re-
quire improvement include the ability to detect
polymicrobial BSIs and miniaturization of test sys-
tems (to minimize instrument footprint) and test
cartridges (tominimize hazardous waste disposal).
Even as this review is written, additional platforms
that improve on the first generation of highly mul-
tiplexed assays are nearing FDA clearance. Labo-
ratories will see panels with broader pathogen
coverage and more comprehensive targeting of
resistance mechanisms. New paradigms for rapid
BSI diagnosis have already been FDA cleared and
made commercially available, such as direct from
peripheral blood pathogen detection (T2 Biosys-
tems) and automated AST from positive blood cul-
ture bottles with a turnaround time of less than 6 h
(Accelerate Diagnostics). Wewill seemarket trends
continue down this course toward faster, cheaper,
and more informative microbiological results to
help manage BSI.

CONCLUSION

The rapid identification of organisms from posi-
tive blood cultures is a critical component in pro-
viding quality healthcare. Nucleic acid probe and
amplification tests have significantly improved the
speed and accuracy of results in blood stream in-
fections. Their effect on the quality of healthcare
continues to evolve but overall has been positive.
This positive result is especially true when the lab-
oratory partners with antimicrobial stewardship
programs to direct appropriate therapy quickly.
Overall, the laboratory implementation of these
molecular techniques needs to be thoughtfully
adapted on the basis of a number of factors includ-
ing the hospital, laboratory capabilities, clinicians,
and patient population.
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