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Background: Sepsis is a leading cause of death for children in the US and worldwide. There is a lack of consensus
how sepsis is clinically defined, and sepsis definitions and diagnostic guidelines for the pediatric population have
remained unchanged formore than a decade now. Current pediatric definitions are largely based on adult guidelines
and expert opinion rather than evidence based on outcomes in the pediatric populations.Without a clear definition of
sepsis, it is challenging to evaluate the performance of new laboratory tests on the diagnosis and management of
sepsis.
Content: This review provides an overview of common etiologies of sepsis in pediatric populations, challenges in
defining and diagnosing pediatric sepsis, and current laboratory tests used to identify and monitor sepsis.
Strengths and limitations of emerging diagnostic strategies will also be discussed.
Summary:Currently there is no single biomarker that canaccurately diagnoseor predict sepsis. Current biomarkers
suchasC-reactiveproteinand lactateareneithersensitivenorspecific fordiagnosingsepsis.Newbiomarkersandrapid
pathogen identification assays are much needed. Procalcitonin, although having some limitations, has emerged as a
biomarker with demonstrated utility inmanagement of sepsis in adults. Parallel studies analyzing the utility of procal-
citonin in pediatric populations are lagging but have shown potential to affect sepsis care in pediatric populations.
Multibiomarker approaches and stepwise algorithms show promise in themanagement of pediatric sepsis. However,
a major hurdle is the lack of validated clinical criteria for classification of pediatric sepsis, which is necessary for the
development of well-designed studies that can assess the clinical impact of these emerging biomarkers.

IMPACT STATEMENT
In the past 2 decades, declines in mortality rates owing to pediatric sepsis have staggered, and sepsis remains

a major cause of mortality in the pediatric population. Updated guidelines and definitions for the diagnosis and

management of pediatric sepsis are much needed to meaningfully assess the impact of new biomarkers and

technologies in the field.
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According to the CDC 2017 National Vital Statis-
tics Report, sepsis is a leading cause of death in
children <9 years of age and a significant cause of
morbidity and mortality for children of all age-
groups (1). Pediatric sepsis results in approxi-
mately 80000 hospitalizations and 7000 deaths
per year in the US (2). The terms “sepsis,” “severe
sepsis,” and “septic shock” represent a disease
continuum with severe sepsis being defined as
sepsis with progressive organ dysfunction and
septic shock being defined as severe sepsis with
persistent cardiovascular dysfunction (Fig. 1). In
2016, the Third International Consensus Defini-
tions for Sepsis and Septic Shock (Sepsis-3)4 were
introduced. Although the Sepsis-3 task force
acknowledged the need for pediatric-specific

definitions, these new definitions currently apply
only to adult populations (3).
Risk of death increases with increasing sepsis

severity (4). In 1966, the mortality rate for pediatric
septic shock was 97% (5). This rate was reduced to
approximately 9% by the early 1990s and is cur-
rently around 8.2% (6). Half of all pediatric sepsis
occurs in patients with underlying comorbidities,
with one-third of all pediatric sepsis occurring in
low-birth-weight neonates (7). Although there has
been a concentrated effort in recent years for early
recognition of sepsis with an aim to decrease pe-
diatric sepsis-related mortality, the reduction in
the mortality rate has been small. For immuno-
compromised children, this is likely because of 2
factors. The first is a concurrent increase in the
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Fig. 1. Schematic depicting sepsis continuum.
Pathogenesis of sepsis is illustrated above, and definitions and criteria for SIRS, sepsis, severe sepsis and septic shock are
listed below. *Organ dysfunction and laboratory metrics that require age-specific cutoffs. Specific age-based cutoffs can be
found in Mathias et al. (4). LPS, lipopolysaccharide; TNF, tumor necrosis factor.
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number of indwelling catheters and medical de-
vices used in pediatric patients, which are a nidus
for bacterial biofilms that may go on to cause sep-
sis. Second, an increasing number of immunosup-
pressive therapies are being used in the pediatric
population for long periods, including immunobio-
logic therapies that suppress cytokine function
and cancer chemotherapy agents that alter or
deplete the body's immune cells. These immuno-
modular therapies have been successful in sup-
pressing chronic inflammatory disease symptoms
and prolonging the lives of children with cancer,
but these agents also put patients at increased risk
for the development of sepsis. There is still much
work to do, as unrecognized pediatric sepsis is a
preventable cause of mortality. In this review, we
will discuss the role of laboratory testing in the
management of pediatric sepsis, as well as the util-
ity of emerging biomarkers in both the diagnosis
and management of sepsis.

PEDIATRIC SEPSIS DEFINITIONS

It is well established that prompt recognition
and initiation of broad-spectrum antibiotics dra-
matically increases the survival rate in all popula-
tions (8). Initial clinical presentation of sepsis in
children, which includes fever, tachycardia, tachy-
pnea, hypotension, and hypothermia, is highly vari-
able, nonspecific, and is often missed. The most
striking feature of pediatric sepsis is that children
can sustain tachycardia for prolonged periods,
which means hypotension may not present until
much later in the sepsis continuum comparedwith
adults with sepsis. Therefore, pediatric sepsis def-
initions are aimed at identifying compensated sep-
tic shock. Currently the pediatric community relies
on the 2005 recommendations set forth by the
International Pediatric Consensus Conference for
diagnostic criteria (9). Pediatric severe sepsis is de-
fined as ≥2 systemic inflammatory response syn-
drome (SIRS) criteria, confirmed or suspected
invasive infection, and cardiovascular, acute

respiratory distress syndrome or ≥2 organ dys-
functions (Fig. 1). These definitions were modified
from consensus definitions created for adult pa-
tients in 1992 (10), with the major difference being
age-specific cutoffs for physiologic and organ dys-
function laboratory parameters.
One of the major criticisms of pediatric sepsis

definitions is that they are adapted from adult cri-
teria and are based on expert consensus, but they
have not been clinically validated in the pediatric
population. Furthermore, their impact on clinical
outcomes is unknown (11). In both adults and chil-
dren, the SIRS criteria have been criticized for their
broader inclusion of mild symptoms and lack of
specificity (12, 13). On the other hand, these defi-
nitions may also miss patients with infection and
single-organ failure with a high mortality risk (14,
15). A subanalysis of a recent epidemiological
study, the Sepsis Prevalence, Outcomes, and Ther-
apies (SPROUT) study of approximately 7000 pedi-
atric intensive care unit patients with sepsis found
only a 42% consensus between the 2005 defini-
tions and physician diagnosis, demonstrating that
the SIRS criteria are not effective in identifying pa-
tients with sepsis or those at risk of escalating to
septic shock (16).
To address some of the limitations of previous

sepsis definitions, the Adult Sepsis Definition Task-
force introduced the Sequential Organ Failure As-
sessment (SOFA) score to the new Sepsis-3
definition. The new adult sepsis definitions have
moved away from using SIRS criteria and now re-
define sepsis as life-threatening organ dysfunction
caused by a dysregulated host response to sys-
temic infection. Further, the new definitions re-
moved the term severe sepsis, recognizing that
the >10% mortality rate associated with sepsis
makes the condition already severe. The purpose
of this addition was to identify patients at high risk
for progression to sepsis and to specify sepsis as
the presence of life-threatening organ dysfunction
with infection as opposed to an uncomplicated in-
fection. The new scoring criteria were developed
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and validated using a large cohort of >1 million
adult patients (17). Although Sepsis-3 definitions
were not validated separately for pediatric popula-
tions, recent studies have demonstrated the feasi-
bility of developing pediatric SOFA (pSOFA) and
Pediatric Logistic Organ Dysfunction-2 (PELOD-2)
scores for use in pediatric patients (18, 19).
A fundamental challenge in creating consensus

definitions for the pediatric populations is the de-
gree of age stratification required for various or-
gan dysfunction and laboratory parameters.
Further studies validating the utility of the pSOFA
andPELOD-2 scores in pediatric populations are in
motion, and it is hoped they will pave the way for
the much-needed update in pediatric consensus
definitions (19, 20). Definitions for sepsis have
important implications in assessing the impact of
novel diagnostic tools on patient outcomes. Well-
validated consensus definitions that can accurately
diagnose and depict a patient's position on the sep-
sis continuum with high specificity are instrumental
indesigningstudies fornewdiagnosticsand incorpo-
rating new findings into clinical practice. Sepsis is
mainly a clinical diagnosis oftenmade before culture
results are available. Although laboratory testing is
used to support criteria for organ dysfunction, cur-
rent sepsis guidelinesdonot incorporate any labora-
torybiomarkers, apart from lactate, into their criteria.
Use of inflammatory biomarkers such as acute
phaseproteins and cytokines for thediagnosis,man-
agement, andprognosis of sepsis has been an active
area of research.

BACTERIAL AGENTS OF SEPSIS BY AGE

Bacteria are the most common microorganism
causing sepsis in children. Toxins such as endo-
toxin and lipopolysaccharide found on the outer
cell membrane of gram-negative bacteria or se-
creted exotoxins and enterotoxins result in many
symptoms associated with sepsis. Toxins can act
as super antigens resulting in a massive activation
of the inflammatory system, cause destruction of

host cells, and allow dissemination of bacteria to
distant body sites. Although the complete patho-
physiology of sepsis is still not completely under-
stood, this dysregulation of the immune response
can lead to theorgandysfunctionseen in severe sep-
sis and progress to circulatory, cellular, and meta-
bolic dysfunction, which are characteristics of septic
shock (Fig. 1). Next, wewill discuss the characteristics
of sepsis by pediatric age-group, as well as current
and future perspectives of laboratory testing for the
diagnosis and management of sepsis.

Pediatric sepsis

The most common comorbidities associated
with pediatric sepsis (>1 year of age) are neuro-
muscular, hematologic, immunologic, and neo-
plastic in nature. Respiratory and primary
bacteremia are the most common sites of infec-
tion for both immunocompetent and immuno-
compromised children (21, 22). In otherwise
healthy children, sepsis is commonly caused by
the gram-positive organisms Streptococcus pneu-
moniae, Streptococcus pyogenes, and Staphylococ-
cus aureus. Common gram-negative agents of
sepsis are Neisseria meningitidis, Escherichia coli,
and Salmonella spp. Tick-borne pathogens such
as Ehrlichia and Rickettsia spp. can also mimic
sepsis-like symptoms. In the past, S. pneumoniae
and Hemophilus influenzae were prominent
causes of pediatric sepsis in the US. Vaccination
has decreased the amount of invasive disease
caused by S. pneumoniae by 75% and H. influen-
zae type b to just a few cases per year for chil-
dren <5 years of age (7).
Immunocompromised pediatric patients are at

much greater risk for developing sepsis than oth-
erwise healthy children. In addition to the sepsis-
causing pathogens above, immunocompromised
children are also at risk of developing sepsis from
additional pathogens based on the presence of
indwelling hardware and the nature of their com-
promised immune systems. Patients with indwell-
ing catheters are at risk for sepsis caused by skin
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flora such as coagulase-negative staphylococci
and Candida spp. Neutropenic patients with mu-
cositis can develop sepsis owing to gram-negative
enterics, Pseudomonas aeruginosa, and viridans
group streptococci. Patients with functional or an-
atomic asplenia, such as sickle cell, are at greater
risk for developing sepsis from encapsulated or-
ganisms such as S. pneumoniae, H. influenzae type
b, N. meningitidis, and Salmonella spp. Finally, pedi-
atric patients with HIV are at higher risk of devel-
oping sepsis from S. pneumoniae, S. aureus, P.
aeruginosa, and H. influenzae type b (7).

Neonatal and infant sepsis

The prevalence of severe sepsis is highest dur-
ing the neonatal and infant period, with nearly half
of all pediatric cases occurring in children <1 year
of age (21, 23, 24). Two-thirds of thosewhodevelop
severe sepsis in this age-group are children classi-
fied as low birth weight (born weighing <2500 g) or
very low birth weight (born weighing <1500 g). The
most common comorbidities in this group are
neuromuscular, cardiovascular, and respiratory
diseases, with the respiratory tract and primary
bacteremia identified as the most common site of
infection for these children (7). Among premature
and low-birth-weight children, the most common
pathogens causing severe sepsis are coagulase-
negative Staphylococcus spp., S. aureus, Candida
spp., and, less frequently, P. aeruginosa and enteric
gram-negative bacteria (7, 21, 25). These organ-
isms reflect the high number of indwelling cathe-
ters, surgical procedures, comorbidities, and
immunocompromised states of these children
comparedwith the general population. Viral sepsis
can clinically mimic bacterial sepsis in the neonatal
age-group, with themost commonpathogens con-
sisting of herpes simplex virus, enterovirus, respi-
ratory syncytial virus, and influenza virus (7). For
otherwise healthy children, the most common mi-
crobial pathogens causing sepsis in the first 7 days
of life are Streptococcus agalactiae (group B strep-
tococci) and E. coli, which are acquired from the

mother during birth (7, 26). Late-onset neonatal
sepsis, acquired between 7 and 28 days of life, is
most likely to be caused by S. agalactiae. In this age
range, 70% of sepsis is caused by gram-positive
organisms and 30% is caused by gram-negative
organisms such as enterics and P. aeruginosa.

LABORATORY TESTING FOR PEDIATRIC
SEPSIS

There is no single laboratory test that can accu-
rately diagnose sepsis or assess the severity of
sepsis. An ideal laboratory marker would be one
that can distinguish bacterial, viral, and noninfec-
tious sources of inflammation, allowing for prompt
initiating of broad-spectrum antibiotic therapy for
bacterial sepsis.
Diagnosticmarkers used for detecting sepsis ex-

ploit the current knowledge of pathogenesis and
mechanisms of sepsis (Fig. 1). Sepsis development
begins after immune recognition of an invading or-
ganism, which stimulates the release of both pro-
inflammatory and antiinflammatory cytokines.
Several studies have shown that changes in the
levels of cytokines are observed before those of
acute phase proteins. Commonly studied cyto-
kines include interleukin (IL)-6, IL-10, IL-1β, and tu-
mor necrosis factor-α (27–29). However, the
performance of these biomarkers is variable and
has not been proven to be superior to clinically
available testing of C-reactive protein (CRP) or pro-
calcitonin (PCT). Furthermore, lack of automation
and the cost to run cytokine profiles have limited
its use in routine clinical practice. CRP, a positive
acute phase reactant, is the best-knownbiomarker
for sepsis and often is used along with blood cul-
ture to benchmark performance of contemporary
biomarkers (30, 31). A major limitation of CRP is
that it lacks specificity for bacterial infections and
sensitivity to detect sepsis in its early stages. Blood
lactate is currently used to determine sepsis sever-
ity and is an indicator of organ dysfunction and
metabolic abnormality in patients with septic
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shock. Additionally, serial measurements are use-
ful in monitoring treatment; however lactate con-
centrations do not increase till much later in the
sepsis continuum.

Blood culture

Blood culture is considered the gold standard
for diagnosis; however, it has limitations, including
low sensitivity of pathogen detection and pro-
longed turnaround time. Although most sepsis is
caused by bacteria, a bacterial pathogen is isolated
from blood in only one-third of sepsis cases, and a
causative bacterial agent is isolated from any body
site in fewer than half of all sepsis cases (3). For this
reason, positive blood culture is not required to
meet the sepsis criteria for either adults or chil-
dren, but it remains the gold standard for diagnos-
ing sepsis (32). Despite the difficulty, isolation of a
bacterial pathogen is extremely useful for tailoring
antimicrobial therapy and determining duration of
treatment; therefore, optimal blood culture collec-
tion should be followed whenever possible to in-
crease the chances of isolating the causative agent
of sepsis.
Although many factors go into an optimal blood

culture collection, themost important by far is sub-
mitting an adequate volume of blood for culture.
Bacteremia patients generally have <5 cfu of bac-
teria per milliliter of blood (33). Two studies by Kel-
logg et al. found that low-level bacteremia, <1 cfu/
mL, was responsible for 71% and 75% of pediatric
deaths owing to sepsis (34, 35). With so few bacte-
ria per milliliter of blood, we can see how easily
bacteremia can bemissed if a small volume is sent
for culture. In adults, it is recommended that 20 to
30 mL of blood be drawn from 2 peripheral veni-
punctures to achieve adequate volume for culture.
Blood from each site should be cultured under
both aerobic and anaerobic conditions, and ideally
blood will be drawn before antibiotics are admin-
istered. Obtaining blood through a catheter is not
recommended because it is more likely to be con-
taminated than a venipuncture. It is worth men-

tioning that to document catheter-associated
bacteremia, a catheter tip can be submitted along
with a venipuncture. It has been well documented
in adults and children that there is an increased
yield of blood pathogen detection for each addi-
tional milliliter of blood that is submitted for cul-
ture (36–38). Obtaining an acceptable volume of
blood from pediatric patients can be a challenge
because before reaching maturity, or generally
around 80 pounds of body weight, pediatric pa-
tients have lower total blood volumes compared
with adults. Although the literature agrees that the
volume is the single most important factor in
pathogen recovery, there is no consensus on the
amount of blood that should optimally be submit-
ted from pediatric patients. Both age- and weight-
based recommendations for pediatric blood
culture volume have been developed (39–42). The
most recent guidelines from the Infectious Dis-
eases Society of America recommend weight-
based criteria to determine the volume of blood
that can be safely drawn from pediatric patients
(43), with reduced volumes for patients weighing
<80 pounds. When <10 mL of blood is cultured,
blood should be placed in a single aerobic bottle
rather than split between an aerobic and anaero-
bic bottle set. Studies to determine the maximum
amount of blood that can be safely drawn from
pediatric patients within a 24-h period were per-
formed on healthy research participants; there-
fore, theymay not accurately reflect the amount of
blood that can be collected from an ill patient. Also,
the blood volumemust cover all laboratory testing,
not just blood culture, and the amount of testing
can be high for critically ill patients.

Rapid diagnostic testing for blood culture

Recognition of sepsis and prompt treatment are
essential for favorable patient outcomes. Guide-
lines recommend treatment be started within 1 h
of suspicion of sepsis. Empiric therapy is chosen
based on the patient's medical history, immuno-
logic state, and organisms commonly known to
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cause sepsis in the patient's age-group. In recent
years, molecular multiplex assays for rapid identi-
fication of bacteria and yeast from positive blood
culture broth have become widely adopted. These
assays require minimal hands-on time and are
technically simple to perform, are random access,
and have a run time of 1 to 2.5 h (44). In addition to
rapidly identifying themost commonblood culture
pathogens, several of these assays detect key an-
timicrobial resistance in 1 to 2.5 h, with 1 assay
able to provide full phenotypic antimicrobial sus-
ceptibility results in 7 h (45). In conjunction with
antimicrobial stewardship programs, these assays
are used to place patients with sepsis on optimal
antimicrobial treatmentmore quickly, with suscep-
tibility results available 24 to 72 h earlier than using
traditional methods (46). This has been shown to
reduce hospital length of stay and decrease overall
hospital costs, therefore improving patient out-
comes for critically ill patients with sepsis (47, 48).
These rapid assays all require positive blood cul-
ture broth, so they cannot meet the 1-h cutoff for
starting antibiotic treatment in suspected septic
patients. Therefore, there is a need to rely on host
serum markers of infection.

PCT

In 2016, the Food and Drug Administration ex-
panded the use of PCT in the management of an-
tibiotic treatment for lower respiratory tract
infections and sepsis. Prior approval in 2008 was
granted for use of PCT in assessment of mortality
risk in septic patients. The Brahms PCT assay is
now cleared by the Food and Drug Administration
on all major manufacturer platforms (Table 1),
making it readily available to most hospital labora-
tories looking to offer PCT with a rapid turnaround
time (49). So far, no guidance for pediatric use has
been issued; however, many studies examining
the performance of PCT for similar indications in
pediatric populations are emerging.
PCT is a 116-amino acid precursor peptide of

calcitonin produced by the CALC-1 gene on chro-
mosome 11. Under normal physiological condi-
tions, PCT is produced only by the C cells of the
thyroid gland, and circulating concentrations are
low (<0.05 ng/mL). During a proinflammatory re-
sponse, CALC-1 induction in parenchymal cells re-
sults in a rapid increase in circulating PCT (50).
Serum PCT >0.5 ng/mL is indicative of systemic

Table 1. BRAHMS PCT assays.

Instrument
platform Assay principle

Analytical
measurement
range, ng/mL

Limit of
detection,
ng/mL

Total
imprecision
(% CV) near
0.5 ng/mL

Brahms Kryptor Homogenous immunoassay using
time-resolved amplified cryptate
emission

0.02–5000 0.02 ≤6%

ADVIA Centaur One-step chemiluminescent
sandwich immunoassay

0.02–75 <0.02 <8%

Architect Chemiluminescent microparticle
immunoassay

0.02–100 2.10%

Roche Elecsys e411 Electrochemiluminescent
immunoassay

0.02–100 ≤0.02 4.20%

Roche e600 Electrochemiluminescent
immunoassay

0.02–100 ≤0.02 2.60%

Diasorin Liason Two-step chemiluminescent
immunoassay

0.02–100 0.02 <10%

BioMeriux VIDAS One-step sandwich immunoassay 0.05–200 0.03 7.86%

Analytical metrics are based on manufacturer-provided information (49).
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infection and possible sepsis (Fig. 2). Elevation of
PCT usually occurs within 2 to 4 h after onset of
inflammation, peaking at approximately 24 to 36 h.
PCT has a serum half-life of 25 to 30 h, and con-
centrations fall rapidly upon resolution of inflam-
mation. The magnitude and duration of PCT levels
correlate with disease severity (51) and are generally
low during viral infections compared with bacterial
and fungal infections (52, 53). Because of these char-
acteristics andkinetics, PCThasbeenproposed tobe
a prognostic and diagnostic marker that can also be
used for monitoring therapeutic response in sepsis.
It is important to note the cutoffs listed in Fig. 2 are
manufacturer-suggested ranges for orientation pur-

poses and that optimal cutoffs aredependenton the
characteristics of the patient population and need to
beoptimized for thedesired clinical use. Additionally,
these cutoffs may vary among different assay plat-
forms (49). A single PCT result should always be
interpreted in the context of the patient's clinical
picture, as it can be increased after severe
trauma and major surgery, as well as in patients
with respiratory distress syndrome, hemody-
namic failure, and acute kidney injury (54). PCT
elevations are also seen in patients with non–
small cell lung cancer and medullary thyroid car-
cinoma (55). Furthermore, PCT cannot be used
to indicate etiology of infection or to tailor anti-
biotic therapy; thus, microbiologic data are still
essential for management of sepsis.
The most critical consideration for laboratories

implementing PCT assays in a pediatric setting is
the need for age-specific reference intervals sepa-
rated by hours of age. This is especially crucial for
interpretation of PCT results within the first 72 h of
life. In a study of 83 healthy newborns <48 h of age,
Chiesa et al. reported that PCT values change
hourly, with peak concentrations occurring at 24 h
of life, and normalize after 48 to 72 h (56, 57). The
mechanism and cellular origin for increase in PCT
during the immediate postnatal period is unknown
but likely reflects a physiologicalmechanism rather
than a stimulus resulting from infection or patho-
gen exposure.
Multiple studies assessing the use of PCT as a

prognostic predictor in pediatric patients have
shown higher PCT levels are associated with sepsis
severity and increased risk of death (58–60). How-
ever, the use for PCT of most interest in pediatric
emergency departments is its accuracy in ruling
out infections that do not need prompt and ag-
gressive treatment. Several studies have examined
the role of PCT in distinguishing viral from bacterial
sources of inflammation in pediatric patients. A
metaanalysis of 8 studies including 616 pediatric
patients showed that PCT can differentiate bacte-
rial and viral meningitis with 96% sensitivity and
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Fig. 2. Manufacturer-provided interpretative
ranges for procalcitonin.
Manufacturer-provided interpretative ranges for procal-
citonin (45) are listed in the table above, and normal
ranges of procalcitonin in newborns based on age in
hours are depicted below in the bar graph.
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89% specificity (61). Another metaanalysis of 7260
children assessed the ability of PCT to detect both
a broad spectrum of serious bacterial infections
(SBIs) from bacterial meningitis to urinary tract
infections and a subgroup of the most severe
SBIs—invasive bacterial infections. This subgroup
included only bacterial meningitis, sepsis, and bac-
teremia. Thismetaanalysis found that PCT sensitiv-
ity and specificity for detecting SBI (55% and 85%,
respectively) was much lower compared with that
for IBI (82% and 86%, respectively) using a thresh-
old of 0.5 ng/mL. The negative predictive value of
PCT was approximately 99% for invasive bacterial
infection and ranged from 79.5% to 96.7% for SBI
(62). Collectively, PCT seems to slightly outperform
CRP in detecting bacterial infections.
The recent Food and Drug Administration clear-

ance of the PCT assay to guide antibiotic use has
tremendous implications for antimicrobial stew-
ardship programs. However, outcome studies in
pediatric populations for this use are limited. The
largest multicenter randomized controlled study
in neonates, the NeoPIns trial, evaluated the use of
PCT-guided decision-making in reducing total anti-
biotic exposure without adverse outcomes (63). Al-
though the study reported shorter antibiotic
courses in the PCT arm, it was underpowered to
determine its impact on reinfection or death. Fur-
thermore, this trial included centers largely based
in the European Union, where antibiotic-prescrib-
ing practices are different. In fact, 1 criticism of the
NeoPIns trial is that the treatment courses in the
control arm were unnecessarily long compared
with standard treatment courses. It has been ar-
gued that neonatal intensive care units that have
effective antibiotic stewardship programs may not
achieve the same results (64). Similarly, in adults,
several European trials have reported decreased
usage of antibiotics with PCT-guided treatment of
lower respiratory tract infections. In contrast, a re-
cent study of 14 US hospitals that included 1656
adult patients showed that PCT-guided decision-
making did not result in less use of antibiotics (65).

More research measuring the impact of PCT on
antibiotic usage in both adult and pediatric popu-
lations is needed.
One challenge implementing PCT diagnostic cut-

offs and PCT-guided therapeutic decision-making
into clinical practice based on published outcome
studies is the use of different assay platforms and,
in some cases, the lack of information on how PCT
testing was performed. Differences in study design
such as inclusion criteria and outcome measures
make it difficult to compare findings from different
studies. With the widespread availability of PCT as-
says in the US, we anticipate more studies assess-
ing the role of PCT for its various applications to be
further elucidated. Laboratories wanting to suc-
cessfully implement PCT testing need to deter-
mine their own interpretative criteria and will likely
require a coordinated effort involving clinical labo-
ratories, infectious disease physicians, and phar-
macists.

FUTURE PERSPECTIVES

Because of the heterogeneity of sepsis as a dis-
ease state and the populations it affects, there will
unlikely be a single marker, “one size fits all” ap-
proach to diagnosis and management. To capture
the disease heterogeneity, multibiomarker panels
and step-by-step algorithmswill likely be the future
of sepsis diagnosis and management (66). In a re-
cent multicenter study of 11 emergency depart-
ments in the European Union, Gomez et al.
validated a diagnostic algorithm that included as-
sessment of clinical features, age, PCT, CRP, and
absolute neutrophil count (67). The goal of this al-
gorithm was to determine whether febrile infants
<90 days of age can be treated as outpatients with-
out lumbar puncture or antibiotics. This step-by-
step approach had a sensitivity and negative
predictive value of 92% and 99.3%, respectively.
Multiple “-omics” approaches have also been ap-

plied for discovery of novel prognostic and diag-
nostic markers (4, 29). Wong et al. developed a
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multiplex mRNA quantification platform of 100
genes that could accurately classify patients with
septic shock and potentially identify patients who
will benefit from corticosteroid therapies (68). A
few studies have analyzed serum and urine
metabolites of septic patients (69–72). In sepsis-
associated inflammation, glucose consumption
through mitochondrial oxidative phosphorylation is
shifted to the production of lactate and pentose
phosphate pathway, leading to decreased ribitol, ri-
bonicacid, and2,3,4-trihydroxybutyric acid, aswell as
increased glucose, lactate, and ketones. A combina-
tion of metabolic profiling and inflammatory media-
tor profiling has been attempted to identify pediatric
patients with or without sepsis (73).
The holy grail of blood culture pathogen identi-

fication is the ability to detect pathogens directly
from patient blood. For traditional blood culture,
blood collected from a patient is injected into
broth media and incubated in an automated in-
strument to allow for biological replication until the
bacteria or yeast grows to a concentration that can
be detected by the instrument, a process taking
from 9 h for patients with high numbers of organ-
ism in their bloodstream to 3 to 5 days for slowly
growing organisms. Direct detection of bacteria
and yeast from blood has been accomplished with
the T2Bacteria Panel and T2Candida Panel (74, 75).
The T2Bacteria Panel detects 5 of the 6 bacteria
known as ESKAPE organisms (Enterococcus fae-
cium, S. aureus, Klebsiella pneumoniae, P. aerugi-
nosa, and E. coli) in a matter of hours after blood
culture collection. The ESKAPE pathogens are the
leading cause of nosocomial infections and often
contain mechanisms of antimicrobial resistance.
Unfortunately, most bacteria causing pediatric
sepsis are not represented on the panel. The
T2Bacteria and T2Candida panels require an addi-
tional blood volume of 3 to 4 mL for testing, and
because of the limited scope of the microbial
pathogens detected, the T2 assays do not replace
traditional bacterial culture. Another company,
Karius, performs next-generation sequencing on

plasma for detection of microbial cell-free DNA
(76). Their assay can identify a broad spectrum of
>1000 bacteria, fungi, DNA viruses, and parasites
directly fromblood, and the assay can identifymul-
tiple organisms from a single blood specimen in
the case of polymicrobial bacteremia. Like the T2
assays, Karius requires an additional blood volume
of 700 μL of plasma beyond culture. All testing is
centralized at their California laboratory, so the
turnaround time for results is not ideal for detec-
tion of routine bacterial pathogens. For this rea-
son, this technology cannot replace traditional
bacterial blood culture currently. Benefits of direct
detection of bloodstream pathogens are the
speed at which results can be available, if testing is
available in-house, because of the elimination of
the incubation period before blood culture broth
signaling positive. Additionally, because these
new molecular assays are not dependent on vi-
able bacterial growth, they are useful for detec-
tion of pathogens that do not grow in culture.
Furthermore, these techniques can also be used
to detect pathogens after antimicrobial therapy
has been initiated. The major downside of all
molecular testing for bacteria is lack of an isolate
for antimicrobial susceptibility testing to guide
therapy. More research on this topic is in prog-
ress, and we look forward to a day when blood
culture pathogens can be detected and identi-
fied in a timeframe like chemistry analytes such
as lactate and PCT.

CONCLUSION

Sepsis is a multifactorial disease, and better
guidelines and diagnostics are needed for early
recognition of this condition in the pediatric popu-
lation. New biomarkers such as PCT show prom-
ise as a test that can help identify patients at
increased risk of developing sepsis and can also
aid in monitoring response to treatment. How-
ever, further studies measuring the impact of
PCT on improved management and outcomes
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are needed. Multibiomarker panels, combining
host inflammatory and metabolic parameters, in
conjunction with pathogen identification are a fa-
vorable approach, as they have potential to stratify
patients by etiology of sepsis, as well as type and
severity of organ dysfunction, and to identify tai-
lored therapeutics. However, these approaches
are still in their infancy. Further, the lack of a con-
sensus definition of the diseasewill remain amajor
hurdle in the field; consensus is needed to create

standardized criteria for study design across dif-
ferent study sites and for implementation of new
findings into clinical practice. It is estimated that an
interventional trial that would detect a 5% reduc-
tion in mortality would require >2000 participants
and >58 pediatric intensive care units (22), indicat-
ing that large-scale studies are needed to truly
demonstrate the clinical impact of these emerging
technologies, whether it be reduction in mortality,
hospital stay, and/or antibiotic use.
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